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ABSTRACT

Visual tracking is a fundamental problem in computer vision.

Recently, some deep-learning-based tracking algorithms have

been achieving record-breaking performances. However, due

to the high complexity of deep learning, most deep trackers

suffer from low tracking speed, and thus are impractical in

many real-world applications. Some new deep trackers with

smaller network structure achieve high efficiency while at the

cost of significant decrease on precision. In this paper, we

propose to transfer the feature for image classification to the

visual tracking domain via convolutional channel reductions.

The channel reduction could be simply viewed as an addi-

tional convolutional layer with the specific task. It not only

extracts useful information for object tracking but also signif-

icantly increases the tracking speed. To better accommodate

the useful feature of the target in different scales, the adap-

tation filters are designed with different sizes. The yielded

visual tracker is real-time and also illustrates the state-of-the-

art accuracies in the experiment involving two well-adopted

benchmarks with more than 100 test videos.

Index Terms— visual tracking, deep learning, real-time

1. INTRODUCTION

Visual tracking is one of the long standing computer vision

tasks. During the last decade, as the surge of deep learning,

more and more tracking algorithms benefit from deep neural

networks, e.g. Convolutional Neural Networks [1, 2] and Re-

current Neural Networks [3, 4]. Despite the well-admitted

success, a dilemma still existing in the community is that,

deep learning increases the tracking accuracy, while at the

cost of high computational complexity. As a result, most well-

performing deep trackers usually suffer from low efficiency

[5, 6]. Recently, some real-time deep trackers were proposed

[7, 8]. They achieved very fast tracking speed, but can not

beat the shallow methods in some important evaluations, as

we illustrate latter.

In this paper, a simple yet effective domain adaptation

algorithm is proposed. The facilitated tracking algorithm,

termed Multi-Scale Domain Adaptation Tracker (MSDAT),
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Fig. 1. The high level concept of the proposed MSDAT

tracker. Left: most of the deep neural network is pretrained

for image classification, where the learning algorithm focus

on object classes. Right: an adaptation is performed to trans-

fer the classification features to the visual tracking domain,

where the learning algorithm treats the individual object in-

dependently.

transfers the features from the classification domain to the

tracking domain, where the individual objects, rather than the

image categories, play as the learning subjects. In addition,

the adaptation could be also viewed as a dimension-reduction

process that removes the redundant information for tracking,

and more importantly, reduces the channel number signifi-

cantly. This leads to a considerable improvement on track-

ing speed. Figure 1 illustrates the adaptation procedure. To

accommodate the various features of the target object in dif-

ferent scales, we train filters with different sizes, as proposed

in the Inception network [9] in the domain adaptation layer.

Our experiment shows that the proposed MSDAT algorithm

runs in around 35 FPS while achieves very close tracking ac-

curacy to the state-of-the-art trackers. To our best knowledge,

our MSDAT is the best-performing real-time visual tracker.

2. RELATED WORK

Similar to other fields of computer vision, in recent years,

more and more state-of-the-art visual trackers are built on



deep learning. [1] is a well-known pioneering work that learns

deep features for visual tracking. The DeepTrack method

[10, 2] learns a deep model from scratch and updates it online

and achieves higher accuracy. [11, 12] adopt similar learning

strategies, i.e., learning the deep model offline with a large

number of images while updating it online for the current

video sequence. [13] achieves real-time speed via replacing

the slow model update with a fast inference process.

The HCF tracker [5] extracts hierarchical convolutional

features from the VGG-19 network [14], then puts the fea-

tures into correlation filters to regress the respond map. It

can be considered as a combination between deep learning

and the fast shallow tracker based on correlation filters. It

achieves high tracking accuracy while the speed is around 10
fps. Hyeonseob Nam et al. proposed to pre-train deep CNNs

in multi domains, with each domain corresponding to one

training video sequence [6]. The authors claim that there ex-

ists some common properties that are desirable for target rep-

resentations in all domains such as illumination changes. To

extract these common features, the authors separate domain-

independent information from domain-specific layers. The

yielded tracker, termed MD-net, achieves excellent tracking

performance while the tracking speed is only 1 fps.

Recently, some real-time deep trackers have also been

proposed. In [7], David Held et al. learn a deep regressor that

can predict the location of the current object based on its ap-

pearance in the last frame. The tracker obtains a much faster

tracking speed (over 100 fps) comparing to conventional deep

trackers. Similarly, in [8] a fully-convolutional siamese net-

work is learned to match the object template in the current

frame. It also achieves real-time speed. Even though these

real-time deep trackers also illustrate high tracking accuracy,

there is still a clear performance gap between them and the

state-of-the-art deep trackers.

3. THE PROPOSED METHOD

In this section, we introduce the details of the proposed

tracking algorithm, i.e., the Multi-Scale Domain Adaptation

Tracker (MSDAT).

3.1. Network structure

In HCF [5], deep features are firstly extracted from multi-

ple layers from the VGG-19 network [14], and a set of KCF

[15] trackers are carried out on those features, respectively.

The final tracking prediction is obtained in a weighted vot-

ing manner. Following the setting in [5], we also extract the

deep features from conv3 5, conv4 5 and conv5 5 network

layers of the VGG-19 model. However, the VGG-19 network

is pre-trained using the ILSVRC dataset [16] for image clas-

sification, where the learning algorithm usually focus on ob-

ject categories. This is different from visual tracking tasks,

where the individual objects are distinguished from other ones

(even those from the same category) and the background. In-

tuitively, it is better to transfer the classification features into

the visual tracking domain.

Fig. 2. The network structure of the proposed MSDAT

tracker. Three layers, namely, conv3 5, conv4 5 and conv5 5
are selected as feature source. The domain adaption (as

shown in yellow lines) reduces the channel number by 8 times

and keeps feature map size unchanged. Better viewed in

color.

In this work, we propose to perform the domain adapta-

tion in a simple way. A “tracking branch” is “grafted” onto

each feature layer, as shown in Fig. 2. The tracking branch

is actually a convolution layer which reduces the channel

number by 8 times and keeps feature map size unchanged.

The convolution layer is then learned via minimizing the loss

function tailored for tracking, as introduced below.

3.2. Learning strategy

The parameters in the aforementioned tracking branch are

learned following a similar manner as Single Shot MultiBox

Detector (SSD), a state-of-the-art detection algorithm [17].

When training, the original layers of VGG-19 (i.e. those

ones before convx 5 are fixed and each “tracking branch” is

trained independently) The flowchart of the learning proce-

dure for one tracking branch (based on conv3 4) is illustrated

in upper row of Figure 3, comparing with the learning strategy

of MD-net [6] (the bottom row). To obtain a completed train-

ing circle, the adapted feature in conv3 5 is used to regress

th objects’ locations and their objectness scores (shown in the

dashed block). Please note that the deep learning stage in this

work is purely offline and the additional part in the dashed

block will be abandoned before tracking.

In SSD, a number of “default boxes” are generated for re-

gressing the object rectangles. Furthermore, to accommodate

the objects in different scales and shapes, the default boxes

also vary in size and aspect ratios. Let mi,j ∈ {1, 0} be an

indicator for matching the i-th default box to the j-th ground

truth box. The loss function of SSD writes:

L(m, c, l, g) =
1

N
(Lconf (m, c) + αLloc(m, l, g)) (1)



Fig. 3. The flow-charts of the training process of MSDAT

and MD-net. Note that the network parts inside the dashed

blocks are only used for training and will be abandoned before

tracking. Better viewed in color.

where c is the category of the default box, l is the predicted

bounding-box while g is the ground-truth of the object box, if

applicable. For the j-th default box and the i-th ground-truth,

the location loss Li,j
loc is calculated as

Li,j
loc(l, g) =

∑

u∈{x,y,w,h}
mi,j · smoothL1(l

u
i − ĝuj ) (2)

where ĝu, u ∈ {x, y, w, h} is one of the geometry parameters

of normalized ground-truth box.

However, the task of visual tracking differs from detection

significantly. We thus tailor the loss function for the KCF al-

gorithm, where both the object size and the KCF window size

are fixed. Recall that, the KCF window plays a similar role

as default boxes in SSD [15], we then only need to generate

one type of default boxes and the location loss Li,j
loc(l, g) is

simplified as

Li,j
loc(l, g) =

∑

u∈{x,y}
mi,j · smoothL1

(lui − guj ) (3)

In other words, only the displacement {x, y} is taken into con-

sideration and there is no need for ground-truth box normal-

ization.

Note that the concept of domain adaptation in this work

is different from that defined in MD-net [6], where differ-

ent video sequences are treated as different domains and thus

multiple fully-connected layers are learned to handle them

(see Figure 3). This is mainly because in MD-net samples

the training instances in a sliding-window manner, An object

labeled negative in one domain could be selected as a positive

sample in another domain. Given the training video number

is C and the dimension of the last convolution layer is dc, the

MD-net learns C independent dc× 2 fully-connected alterna-

tively using C soft-max losses, i.e.,

Mi
fc : R

dc → R
2, ∀i = 1, 2, . . . , C (4)

where Mi
fc, ∀i ∈ {1, 2, . . . , C} denotes the C fully-

connected layers that transferring the common visual domain

to the individual object domain, as shown in Figure 3.

Differing from the MD-net, the domain in this work refers

to a general visual tracking domain, or more specifically, the

KCF domain. It is designed to mimic the KCF input in vi-

sual tracking (see Figure 3). In this domain, different track-

ing targets are treated as one category, i.e., objects. When

training, the object’s location and confidence (with respect

to the objectness) are regressed to minimize the smoothed

l1 loss. Mathematically, we learn a single mapping function

Mconv(·) as

Mmsdat : R
dc → R

4 (5)

where the R4 space is composed of one R2 space for displace-

ment {x, y} and one label space R
2.

Compared with Equation 4, the training complexity in

Equation 5 decreases and the corresponding convergence be-

comes more stable. Our experiment proves the validity of the

proposed domain adaptation.

3.3. Multi-scale domain adaptation

As introduced above, the domain adaption in our MSDAT

method is essentially a convolution layer. To design the layer,

an immediate question is how to select a proper size for the

filters. According to Figure 2, the feature maps from different

layers vary in size significantly. It is hard to find a optimal

filer size for all the feature layers. Inspired by the success

of Inception network [9], we propose to simultaneously learn

the adaptation filters in different scales. The response maps

with different filter sizes are then concatenated accordingly, as

shown in Figure 4. In this way, the input of the KCF tracker

involves the deep features from different scales.

Conv3_4
256@56x56

7x7

5x5

3x3

Conv3_5
36@56x56

Fig. 4. Learn the adaptation layer using three different types

of filters

In practice, we use 3× 3 and 5× 5 filters for all the three

feature layers. Given the original channel number is K, each



type of filter generate K
16 channels and thus the channel reduc-

tion ratio is still 8 : 1.

3.4. Make the tracker real-time

3.4.1. Channel reduction

One important advantage of the proposed domain adaptation

is the improvement of the tracking speed. It is easy to see that

the speed of KCF tracker drops dramatically as the channel

number increase. In this work, after the adaptation, the chan-

nel number is shrunk by 8 times which accelerates the tracker

by 2 to 2.5 times.

3.4.2. Lazy feed-forward

Another effective way to increase the tracking speed is to re-

duce the number of feed-forwards of the VGG-19 network. In

HCF, the feed-forward process is conducted for two times at

each frame, one for prediction and one for model update [5].

However, we notice that the displacement of the moving ob-

ject is usually small between two frames. Consequently, if we

make the input window slightly larger than the KCF window,

one can reuse the feature maps in the updating stage if the

new KCF window (defined by the predicted location of the

object) still resides inside the input window. We thus propose

a lazy feed-forward strategy, which is depicted in Figure 5.

Fig. 5. The illustration of lazy feed-forward strategy. To

predict the location of the object (the boy’s head), a part of

the image (green window) is cropped for generating the net-

work input. Note that the green window is slightly larger than

the red block, i.e., the KCF window for predicting the current

location. If the predicted location (shown in yellow) still re-

sides inside the green lines, one can reuse the deep features

by cropping the corresponding feature maps accordingly.

In this work, we generate the KCF window using the same

rules as HCF tracker [5], the input window is 10% larger than

the KCF window, both in terms of width and height. Facili-

tated by the lazy feed-forward strategy, in the proposed algo-

rithm, feed-forward is conducted only once in more than 60%
video frames. This gives us another 50% speed gain.

4. EXPERIMENT

4.1. Experiment setting

In this section, we report the results of a series of experiment

involving the proposed tracker and some state-of-the-art ap-

proaches. Our MSDAT method is compared with some well-

performing shallow visual trackers including the KCF tracker

[15], TGPR [18], Struck [19], MIL [20], TLD [21] and SCM

[22]. Also, some recently proposed deep trackers including

MD-net [6], HCF [5], GOTURN [7] and the Siamese tracker

[8] are also compared. All the experiment is implemented

in MATLAB with matcaffe [23] deep learning interface, on

a computer equipped with a Intel i7 4770K CPU, a NVIDIA

GTX1070 graphic card and 32G RAM.

The code of our algorithm is published in Bitbucket

via https://bitbucket.org/xinke_wang/msdat,

please refer to the repository for the implementation details.

4.2. Results on OTB-50

Similar to its prototype [24], the Object Tracking Benchmark

50 (OTB-50) [25] consists 50 video sequences and involves

51 tracking tasks. It is one of the most popular tracking

benchmarks since the year 2013, The evaluation is based on

two metrics: center location error and bounding box overlap

ratio. The one-pass evaluation (OPE) is employed to compare

our algorithm with the HCF [5], GOTURN [7], the Siamese

tracker [8] and the afore mentioned shallow trackers. The re-

sult curves are shown in Figure 6

From Figure 6 we can see, the proposed MSDAT method

beats all the competitor in the overlapping evaluation while

ranks second in the location error test, with a trivial inferiority

(around 1%) to its prototype, the HCF tracker. Recall that the

MSDAT beats the HCF with the similar superiority and runs

3 times faster than HCF, one consider the MSDAT as a super

variation of the HCF, with much higher speed and maintains

its accuracy. From the perspective of real-time tracking, our

method performs the best in both two evaluations. To our

best knowledge, the proposed MSDAT method is the best-

performing real-time tracker in this well-accepted test.

4.3. Results on OTB-100

The Object Tracking Benchmark 100 is the extension of OTB-

50 and contains 100 video sequences. We test our method

under the same experiment protocol as OTB-50 and compar-

ing with all the aforementioned trackers. The test results are

reported in Table 1

As can be seen in the table, the proposed MSDAT algo-

rithm keep its superiority over all the other real-time trackers

and keep the similar accuracy to HCF. The best-performing

MD-net (according to our best knowledge) enjoys a remark-

able performance gap over all the other trackers while runs in

around 1 fps.
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Fig. 6. The location error plots and the overlapping accuracy plots of the involving trackers, tested on the OTB-50 dataset.

Sequence Ours HCF MD-Net SiamFC GOTURN KCF Struck MIL SCM TLD

DP rate(%) 83.0 83.7 90.9 75.2 56.39 69.2 63.5 43.9 57.2 59.2

OS(AUC) 0.567 0.562 0.678 0.561 0.424 0.475 0.459 0.331 0.445 0.424

Speed(FPS) 34.8 11.0 1 58 165 243 9.84 28.0 0.37 23.3

Table 1. Tracking accuracies of the compared trackers on OTB-100

4.4. The validity of the domain adaptation

To better verify the proposed domain adaptation, here we run

another variation of the HCF tracker. For each feature layer

(conv3 4, conv4 4, conv5 4) of VGG-19, one randomly se-

lects one eighth of the channels from this layer. In this way,

the input channel numbers to KCF are identical to the pro-

posed MSDAT and thus the algorithm complexity of the “ran-

dom HCF” and our method are nearly the same. The compar-

ison of MSDAT, HCF and random HCF on OTB-50 is shown

in Figure 7

From the curves one can see a large gap between the ran-

domized HCF and the other two methods. In other words,

the proposed domain adaptation not only reduce the channel

number, but also extract the useful features for the tracking

task.

5. CONCLUSION AND FUTURE WORK

In this work, we propose a simple yet effective algorithm to

transferring the features in the classification domain to the

visual tracking domain. The yielded visual tracker, termed

MSDAT, is real-time and achieves the comparable tracking

accuracies to the state-of-the-art deep trackers. The experi-

ment verifies the validity of the proposed domain adaptation.

Admittedly, updating the neural network online can lift

the tracking accuracy significantly [2, 6]. However, the ex-

isting online updating scheme results in dramatical speed re-

duction. One possible future direction could be to simultane-

ously update the KCF model and a certain part of the neural

network (e.g. the last convolution layer). In this way, one

could strike the balance between accuracy and efficiency and

thus better tracker could be obtained. Another direction is to

replace the KCF tracker with hashing models [26, 27, 28, 29]

which could be trained and conducted efficiently.
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